L10: Introduction to FET's

Analog Electronics

ENEE236

Instructor: Nasser Ismail

FET Vs conventional Transistors (BJT)

Advantages

1- High input impedance ; ~100 M !
2- Fewer steps in manufacturing process.

3- More devices can be packaged into smaller area for integrated circuit IC

Disadvantages

1- Low values of voltage gain.
2- Poor high frequency performance.

Junction Field Effect Transistor JFET

JFET construction:

\checkmark Reverse biasing the gate to source junctions causes the formation of the depletion region
\checkmark The drain has the proper polarity with respect to the source to establish the drain current $I_{D S}$
\checkmark The value of $I_{D S}$ depends on the width of the channel.
\checkmark The width of the channel is controlled by reverse biasing the pn-junctions between gate and source .

If the channel width increases $I_{D S}$ increases .

Operation of a JFET

DC Voltage Source

-When VDD is applied, electrons are drawn to the drain terminal establishing drain current ID
-Drain and source currents are equivalent (ID=Is)
-ID is limited by the resistance of the n-channel between the drain and source
$-\mathrm{IG}=0$ (due to the fact that the pn junction id reverse biased)
-As VDs is increased, ID will also increase according to ohms law

- As Vds is increased towards a value Vp (pinch off voltage), the depletion region is widened and channel width is reduced increasing resistance to ID and the two depletion regions will appear as touching each other
-These two effects result in ID being kept almost constant

N-Channel JFET Operation

(a) Bias is zero and depletion layer is thin: low-resistance channel exists between the drain and the source

(b) Moderate gate-to-channel reverse bias results in narrower channel

(c) Bias greater than pinch-off voltage; no conductive path from drain to source

The nonconductive depletion region becomes thicker with increased reverse bias.
(Note: The two gate regions of each FET are connected to each other.)

JFET Circuit Symbol:

JFET output characteristic:

Instructor: Nasser Ismail

Pinch of voltage V_{P} :

For $V_{G S}=0$, the value of $V_{D S}$ at which $I_{D S}$ becomes essentially constant Is the absolute of the pinch of voltage $V_{D S}=\left|V_{P}\right|$

Some literature refer to V p as $\operatorname{VGS}($ off $)$
$V_{P}=\left\{\begin{array}{l}\text { negative value for } n_{-} \text {channel } \\ \text { positive value for } p_{-} \text {channel }\end{array}\right.$

JFET Transfer characteristic curve:

$$
I_{D S}(\mathrm{t})=I_{D S S}\left(1-\frac{V_{G S}(t)}{V_{P}}\right)^{2}
$$

P-channel JFET

$$
I_{D S}(\mathrm{t})=I_{D S S}\left(1-\frac{V_{G S}(t)}{V_{P}}\right)^{2}
$$

In pinch off region:

$$
\begin{gathered}
\left|V_{D S}\right|>\left|V_{P}\right|-\left|V_{G S}\right| \\
V_{P}>V_{G S} \geq 0
\end{gathered}
$$

Pinch off voltage:

\checkmark The voltage that cusses the depletion region to touch and close the channel is called pinch off voltage
\checkmark For the n-channel JFET to be in the pinch off region:

$$
\begin{gathered}
V_{P}<V_{G S} \leq 0 \\
\left|V_{D S}\right|>\left|V_{P}\right|-\left|V_{G S}\right|
\end{gathered}
$$

\checkmark For the p-channel JFET to be in the pinch off region:

$$
\begin{gathered}
\left|V_{D S}\right|>\left|V_{P}\right|-\left|V_{G S}\right| \\
V_{P}>V_{G S} \geq 0
\end{gathered}
$$

Common JFET Biasing Circuits

$>$ Fixed-Bias
> Self-Bias
$>$ Voltage-Divider Bias

Basic Current Relationships

For all FETs:

$$
I_{a} \equiv 0 \mathrm{~A} \quad I_{0}=I_{s}=I_{a x}
$$

For JFETS

Fixed-Bias Configuration

$$
\begin{aligned}
& V_{D S}=V_{D D}-I_{D} R_{D} \\
& V_{S}=0 \mathrm{~V} \\
& \therefore V_{D}=V_{D S} \\
& \therefore V_{G S}=-V_{G G}
\end{aligned}
$$

Example

$$
V_{G S}=V_{G}-V_{S}=-1.5-0=-1.5 \mathrm{~V}
$$

Assuming JFET is in pinch off region

$$
\begin{aligned}
& \text { 1) } I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} \\
& =10 \mathrm{~mA}\left(1-\frac{-1.5}{-4}\right)^{2} \\
& =3.9 \mathrm{~mA} \\
& \text { 2) } V_{D S}=V_{D D}-I_{D} R_{D} \\
& =16-((2 \mathrm{k})(3.9 \mathrm{~mA})) \\
& =8.2 \mathrm{~V}
\end{aligned}
$$

3)check for
$\left|\mathrm{V}_{\mathrm{DS}}\right|>\left|\mathrm{V}_{\mathrm{P}}\right|-\left|\mathrm{V}_{\mathrm{GS}}\right|$?
$|8.2|>|-4|-|-1.5|$
assumption is true

Graphical method:

- $I_{D S}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$
- $V_{G S}=-1.5 \mathrm{v}$ Fixed

Self-Bias Configuration

$$
\begin{aligned}
& V_{G S}=V_{G}-V_{S}=0-V_{S}=-V_{S} \\
& V_{S}=I_{D} R_{S} \\
& V_{G S}=-I_{D} R_{S} \\
& V_{D}=V_{D D}-I_{D} R_{D} \\
& V_{D S}=V_{D}-V_{S} \\
& =V_{D D}-I_{D} R_{D}-I_{D} R_{S} \\
& =V_{D D}-I_{D}\left(R_{S}+R_{D}\right)
\end{aligned}
$$

Example

$$
\mathrm{V}_{\mathrm{P}}=-4 \mathrm{~V}
$$

$$
\begin{aligned}
& V_{G S}=V_{G}-V_{S}=0-V_{S}=-V_{S} \\
& V_{S}=I_{D} R_{S}=600 \mathrm{I}_{\mathrm{D}} \\
& V_{G S}=-600 I_{D} \\
& \text { 1) } I_{D}=10 \mathrm{~mA}\left(1-\frac{-600 I_{D}}{-4}\right)^{2} \\
& \qquad a x^{2}+b x+c=0 \\
& \quad x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{DSS}}=10 \mathrm{~mA}
$$

Example-continued

solving for I_{D} :
$I_{D 1}=14.77 \mathrm{~mA}>\mathrm{I}_{\mathrm{Dss}}$ and this solution is not possible
$I_{D 2}=3 \mathrm{~mA} \Leftarrow$ this is the correct solution
2) $\therefore \mathrm{V}_{\text {GS }}=-600 \mathrm{I}_{\mathrm{D}}=-600 \times 3 \mathrm{~mA}=-1.8 \mathrm{~V}$
$V_{D}=V_{D D}-I_{D} R_{D}$
$V_{D S}=V_{D D}-I_{D}\left(R_{S}+R_{D}\right)$
$=15-3 \mathrm{~mA}(1 \mathrm{k}+0.6 \mathrm{k})=10.2 \mathrm{~V}$
3)check for $\quad\left|\mathrm{V}_{\mathrm{DS}}\right|>\left|\mathrm{V}_{\mathrm{p}}\right|-\left|\mathrm{V}_{\mathrm{Gs}}\right|$?
$|10.2|>|-4|-|-1.8|$
assumption is true

Graphical method

- $I_{D S}=I_{D S S}\left(\mathbf{1}-\frac{V_{G S}}{V_{P}}\right)^{2}$
- $V_{G S}=-(0.6 \mathrm{~K}) I_{D S}$
when $V_{G S}=0 \rightarrow I_{D S}=0 \mathrm{~mA}$
when $V_{G S}=-3 \mathrm{v} \rightarrow I_{D S}=5 \mathrm{~mA}$

Voltage-Divider Bias

$$
\begin{aligned}
& I_{G}=0 \mathrm{~A} \\
& I_{D} \text { responds to changes } \\
& \text { in } V_{G S} \text {. }
\end{aligned}
$$

Voltage-Divider Bias Calculations

$I_{G}=0 \mathrm{~A}$
V_{G} is equal to the voltage across divider resistor R_{2} :

$$
\begin{aligned}
& V_{G}=\frac{R_{2} V_{D D}}{R_{1}+R_{2}} \\
& V_{S}=I_{D} R_{S}
\end{aligned}
$$

Using Kirchhoff's Law:

$$
\begin{aligned}
& V_{G S}=V_{G}-I_{D} R_{S} \\
& V_{G S}=\frac{R_{2} V_{D D}}{R_{1}+R_{2}}-I_{D} R_{S}
\end{aligned}
$$

The Q-point is established by plotting a line that intersects the transfer curve.

Example

V_{s} must be more positive than V_{G}
to keep the gate - source junction reverse biased

$$
\begin{aligned}
& V_{S}=I_{D} R_{S} \\
& V_{G S}=\frac{R_{2} V_{D D}}{R_{1}+R_{2}} \\
& V_{G S}=V_{G}-I_{D} R_{S} \\
& V_{G S}=\frac{R_{2} V_{D D}}{R_{1}+R_{2}}-I_{D} R_{S} \\
& V_{D}=V_{D D}-I_{D} R_{D}=7 \mathrm{~V} \\
& \quad I_{D}=\frac{V_{D D}-V_{D}}{R_{D}}=\frac{12-7}{3300}=1.52 \mathrm{~mA}
\end{aligned}
$$

Example

$V_{S}=I_{D} R_{S}=(1.52 \mathrm{~mA})(2.2 \mathrm{k} \Omega)=3.34 \mathrm{~V}$
$V_{G}=\frac{1 \mathrm{M}}{1 \mathrm{M}+6 \mathrm{M}} 15=1.54 \mathrm{~V}$
$V_{G S}=1.54-3.34=-1.8 \mathrm{~V}<0 \Leftarrow \mathrm{OK}$
also
$\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{S}}}=\frac{3.34}{2200}=1.52 \mathrm{~mA}$

Example- V_{D} unknown

For the same example, if V_{D} was not given, then we use the square law rule $I_{D}=f\left(V_{G S}\right)$
to find I_{D} and $V_{G S}$ by substituting the expression for $V_{G S}=\frac{R_{2} V_{D D}}{R_{1}+R_{2}}-I_{D} R$ in it and solving for I_{D}

$$
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} \quad \mathrm{R}_{1}+\mathrm{R}_{2}
$$

Voltage-Divider Q-Point

Plot the line that is defined by these two points:

$$
\begin{aligned}
& V_{G S}=V_{G}, I_{D}=0 \mathrm{~A} \\
& V_{G S}=0 \mathrm{~V}, I_{D}=V_{G} / R_{S}
\end{aligned}
$$

Plot the transfer curve by plotting $I_{D S S}, V_{P}$ and the calculated values of I_{D}

The Q-point is located where the line intersects the transfer curve

$$
\begin{array}{ll}
\text { Example p-channel } & \mathrm{V}_{\mathrm{P}}=5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{GS}}=\frac{\mathrm{R}_{2} \mathrm{x}-20}{\mathrm{R}_{1}+\mathrm{R}_{2}}+\mathrm{I}_{\mathrm{D}} \mathrm{R} & \mathrm{I}_{\mathrm{DSS}}=18 \mathrm{~mA} \\
I_{G S}=-4+I_{D} R_{S} & I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}
\end{array}
$$

$$
I_{D}=18 \mathrm{~mA}\left(1-\frac{-4+1650 I_{D}}{5}\right)^{2}
$$

- Solving the quadratic equation and finding its roots yields:

$$
\begin{aligned}
I_{D 1} & =4.7 \mathrm{~mA} \\
I_{D 2} & =7.4 \mathrm{~mA}
\end{aligned}
$$

both values of $I_{D}<I_{\text {DSS }}$ and are possible solutions
so we verify value of V_{GS} :

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{GS} 1}=-4+(4.7 \mathrm{~mA})(1.65 \mathrm{k} \Omega)=3.75 \mathrm{~V}<\mathrm{V}_{\mathrm{p}} \angle \text { correct solution } \\
& \mathrm{V}_{\mathrm{GS} 2}=-4+(7.4 \mathrm{~mA})(1.65 \mathrm{k} \Omega)=8.21 \mathrm{~V}>\mathrm{V}_{\mathrm{p}} \times \text { wrong solution }
\end{aligned}
$$

Graphical method

- $I_{D S}=I_{D S S}\left(\mathbf{1}-\frac{V_{G S}}{V_{P}}\right)^{2}$
- $V_{G S}=-4+(0.6 \mathrm{~K}) I_{D S}$
when $V_{G S}=-4 \mathrm{v} \rightarrow I_{D S}=0 \mathrm{~mA}$
when $V_{G S}=0 \mathrm{v} \rightarrow I_{D S}=2.42 \mathrm{~mA}$

Midpoint Bias

For maximum Symmetrical Swing

- Place Q-point in the middle point of the transfer characteristic to allow for maximum swing between loss and zero

\[

\]

Example

Choose R_{D} and Rs for mid point bias

$$
\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{DSS}}=6 \mathrm{~mA}
$$

$$
\mathrm{V}_{\mathrm{D}}=0.5 \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{GS}}=\frac{\mathrm{V}_{\mathrm{GS}(\mathrm{fff}}}{3.4}=\frac{-3}{3.4}=-0.882 \mathrm{~V}
$$

$$
\mathrm{Rs}=\frac{\mathrm{Vs}}{\mathrm{Rs}}=\frac{0.882}{6 \mathrm{~mA}}=147 \Omega
$$

$$
V_{D D}-I_{D} R_{D}-V_{D}=0
$$

$$
\mathrm{V}_{\mathrm{r}}=V g s(o f f)=-3 \mathrm{~V}
$$

$$
\mathrm{I}_{\mathrm{DSs}}=12 \mathrm{~mA}
$$

$$
\mathrm{R}_{\mathrm{D}}=\frac{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{D}}}=1 \mathrm{k} \Omega
$$

Metal Oxide Semiconductor Field Effect Transistor MOSFET

- 1) Depletion type MOSFET: DMOSFET
- 2) Enhancement type MOSFET: EMOSFET
- The MOSFET differs from the JFET in that it has no pn junction structure; instead, the gate of the MOSFET in insulated from the channel by a silicon dioxide ($\mathrm{S}_{i} \mathrm{O}_{2}$) large.
- Due to this the input resistance of MOSFET is greater than JFET.

Depletion type MOSFET:

- Construction of n-channel DMOSFET:

Operation, characteristic and parameters of DMOSFET

- n-channel DMOSFET

- On the application of $V_{D S}$ and keeping $V_{G S}=0$ electrons from the n-channel are attracted towards positive potential of the drain terminal .
- This establishes current through the channel to be denotes as $I_{D S S}$ at $V_{G S}=0$.
- If we apply negative gate voltage ($V_{G S}<0$) the negative charge on the gate repel electrons from the channel. The number of repelled electrons depends on the magnitude of the negative voltage $V_{G S}$.
- The grater the negative voltage applied at the gate , the level of drain current will reduces until it reaches zero; $V_{G S}=V_{P}$.
- For positive value of $V_{G S}$, the positive gate will draw additional electrons from the p-type substrate and the drain current increases .

P-channel
DMOSFET

n-channel DMOSFET

Drain characteristics for an n-channel DMOSFET

Transfer characteristics for an n-channel DMOSFET

Instructor: Nasser Ismail

Drain characteristics for an p-channel DMOSFET

Transfer characteristics for an p-channel DMOSFET

Instructor: Nasser Ismail

In the pinch off region

$i_{D S}(t)=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$
 *For the n-channel

$V_{G S}>V_{P}$ (negative)
$V_{D S}>V_{G S}-V_{P}$

For the p-channel

$$
\begin{gathered}
V_{G S}<V_{P}(\text { positive }) \\
V_{D S}<V_{G S}-V_{P}
\end{gathered}
$$

Example

Suppose that the DMOSFET is in the pinch off region
$I_{D S}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$ \qquad
$V_{G S}=V_{G}-V_{S}=V_{G}$
$V_{G}=\frac{11 M}{11 M+100 \mathrm{M}}(12)=1.19 \mathrm{v}$ \qquad
sub 2 into 1 , we obtain
$I_{D S}=6.13 \mathrm{~mA}>I_{D S S}$!! THIS IS POSSIBLE AND
DMOSFET WILL OPERATE IN ENHANCEMENT MODE

$I_{D S S}=4 \mathrm{~mA} \quad V_{P}=-5 \mathrm{v}$

$$
\begin{aligned}
& V_{D S}=V_{D D}-0.5 \mathrm{~K} I_{D S}=8.93 \mathrm{v} \\
& V_{D S}>? V_{G S}-V_{P}=6.19 \mathrm{v}
\end{aligned}
$$

Enhancement Type MOSFET

- Construction of n-channel EMOSFET:

Operation , characteristic and parameters of EMOSFET

- On the application of $V_{D S}$ and keeping $V_{G S}=0$ practically zero current flows .
- If we increase $V_{G S}$ in the positive direction the concentration of electrons near the SiO_{2} surface increases,
- At particular value of $V_{G S}$ there is a measurable current flow between drain and source ; $I_{D S}$.
- This value of $V_{G S}$ is called threshold voltage denoted by V_{T} or $V_{G S(T H)}$
- A positive $V_{G S}$ above V_{T} induce a channel and hence the drain current ($I_{D S}$) by creating a thin layer of negative charges (electrons) in the substrait adjacent to the SiO_{2} large .

The conductivity of the channel is enhanced by increasing $V_{G S}$ and thus pulling more electrons into the channel.

P-channel
EMOSFET

n-channel
EMOSFET

Drain characteristics for an n-channel EMOSFET

Transfer characteristics for an n-channel EMOSFET

Instructor: Nasser Ismail

Summary Table

In the pinch off region

Example

$$
\begin{equation*}
I_{D S}=K_{n}\left(V_{G S}-V_{T}\right)^{2} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& V_{G S}=V_{G}-V_{S} \\
& V_{G}=\frac{22 M}{22 M+47 M}(18)=5.74 \mathrm{v}
\end{aligned}
$$

Instructor: Nasser Ismail
$V_{S}=(0.5 \mathrm{~K}) I_{D S}$

$$
V_{G S}=5.74-(0.5 \mathrm{~K}) I_{D S} \ldots \ldots \ldots \ldots2
$$

solving for $\boldsymbol{V}_{\boldsymbol{G}} \boldsymbol{S}$:

$$
\begin{aligned}
V_{G S} & =4.78 \mathrm{v} \quad \sqrt{ } \\
& =-8.78 \mathrm{v} \quad \mathrm{X}
\end{aligned}
$$

$I_{D S}=1.92 \mathrm{~m} \mathrm{~A}$

$V_{D S}=12.82>\left|V_{G S}-V_{T}\right|$

Instructor: Nasser Ismail

